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Abstract. Two schemes for sharing an arbitrary two-qubit state based on entanglement swapping are pro-
posed with Bell-state measurements and local unitary operations. One is based on the quantum channel
with four Einstein-Podolsky-Rosen (EPR) pairs shared in advance. The other is based on a circular topo-
logical structure, i.e., each user shares an EPR pair with his neighboring one. The advantage of the former
is that the construction of the quantum channel between the agents is controlled by the sender Alice, which
will improve the security of the scheme. The circular scheme reduces the quantum resource largely when
the number of the agents is large. Both of those schemes have the property of high efficiency as almost all
the instances can be used to split the quantum information. They are more convenient in application than
the other schemes existing as they require only two-qubit entanglements and two-qubit joint measurements
for sharing an arbitrary two-qubit state.

PACS. 03.67.Hk Quantum communication – 03.67.Dd Quantum cryptography – 03.65.Ud Entanglement
and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

1 Introduction

The basic idea of secret sharing [1] in a simple case is
that a secret (MA) is divided by the sender Alice into two
pieces which will be distributed to two parties, Bob and
Charlie, respectively, and they can reconstruct the secret
if and only if both act in concert. Each can get nothing
about the message MA. As classical signal can be copied
freely and fully without leaving a track, there is no way for
people to complete the task unconditionally securely with
classical physics in principle. When quantum mechanics
enters the field of information, the case is changed. Quan-
tum secret sharing (QSS), an important branch of quan-
tum communication, is the generalization of classical se-
cret sharing into quantum scenario [2,3]. There are three
main goals in QSS. The first one is used to distribute a
private key among several parties, such as those in ref-
erences [2–8]; the second is used for splitting a classical
secret [2,3,9–15], and the third one can be used to share
an unknown quantum state [16–18], which has to resort
to quantum entanglement.
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Certainly, quantum key distribution (QKD) provides
a secure way for generating a private key between two re-
mote parties and then can be used to complete the task
for disturbing the key among several parties. The dif-
ference between QSS and QKD [19] is that the former
can reduce the resource necessary to implement multi-
party secret sharing tasks and is more convenient than
that with QKD [5]. A pioneering QSS scheme was pro-
posed by Hillery, Bužek and Berthiaume in 1999 by using
three-particle and four-particle entangled Greenberger-
Horne-Zeilinger (GHZ) states for sharing classical infor-
mation, called HBB99 customarily for short. For sharing
a quantum secret, almost all of the existing QSS protocols
either are used to split a single qubit [16] or resorts to m-
particle entanglements [18] and m-particle joint measure-
ments (m > 2) [16,17]. The producing and measurement
of m-particle entanglement both are not easy with present
techniques [20–22].

From the view of security, sharing a quantum secret in
QSS is similar to quantum secure direct communication
(QSDC) [24–26] in which the secret message is transmit-
ted directly without creating a private key and then en-
crypting the message as the quantum secret should not be
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|Φ〉ab3456 ≡ (α|00〉 + β|01〉 + γ|10〉 + δ|11〉)ab ⊗ |ψ−〉34 ⊗ |ψ−〉56
=

1

4
{|ψ−〉a3[|ψ−〉b5(α|00〉 + β|01〉 + γ|10〉 + δ|11〉)46 + |ψ+〉b5(α|00〉 − β|01〉 + γ|10〉 − δ|11〉)46

−|φ−〉b5(α|01〉 + β|00〉 + γ|11〉 + δ|10〉)46 − |φ+〉b5(α|01〉 − β|00〉 + γ|11〉 − δ|10〉)46]
+|ψ+〉a3[|ψ−〉b5(α|00〉 + β|01〉 − γ|10〉 − δ|11〉)46 + |ψ+〉b5(α|00〉 − β|01〉 − γ|10〉 + δ|11〉)46

−|φ−〉b5(α|01〉 + β|00〉 − γ|11〉 − δ|10〉)46 − |φ+〉b5(α|01〉 − β|00〉 − γ|11〉 + δ|10〉)46]
−|φ−〉a3[|ψ−〉b5(α|10〉 + β|11〉 + γ|00〉 + δ|01〉)46 + |ψ+〉b5(α|10〉 − β|11〉 + γ|00〉 − δ|01〉)46

−|φ−〉b5(α|11〉 + β|10〉 + γ|01〉 + δ|00〉)46 − |φ+〉b5(α|11〉 − β|10〉 + γ|01〉 − δ|00〉)46]
−|φ−〉a3[|ψ−〉b5(α|10〉 + β|11〉 − γ|00〉 − δ|01〉)46 + |ψ+〉b5(α|10〉 − β|11〉 − γ|00〉 + δ|01〉)46

−|φ−〉b5(α|11〉 + β|10〉 − γ|01〉 − δ|00〉)46 − |φ+〉b5(α|11〉 − β|10〉 − γ|01〉 + δ|00〉)46]} (5)

leaked to the dishonest one. It is necessary for QSS to set
up a quantum channel securely in advance [2,3,11–14,16],
which is same as QSDC in references [24–26]. The way for
sharing a sequence of two-particle maximally entangled
states, Einstein-Podolsky-Rosen (EPR) pairs is discussed
in references [24,27].

In this paper, we will present a quantum state sharing
(which is abbreviated as QSTS in reference [17], different
from QSS for classical information) scheme for sharing
an arbitrary two-qubit state |χ〉ab = α|00〉ab + β|01〉ab +
γ|10〉ab+ δ|11〉ab based on entanglement swapping [28–30]
with Bell-state measurements and local unitary opera-
tions. It will be shown that the state |χ〉ab can be split
by two agents with four EPR pairs shared in advance and
four Bell-state measurements, not m-particle joint mea-
surements (m > 2). Any one in the two agents has the
choice to reconstruct the original state |χ〉ab with the help
of the other. Moreover, we present a circular topological
structure for splitting the state |χ〉ab with EPR pairs and
Bell-state measurements efficiently as it reduces the quan-
tum resource largely when the number of the agents is
large. Almost all the EPR pairs can be used for quan-
tum communication in those two schemes, their efficiency
for qubits approaches the maximal value, same as refer-
ences [16–18]. They are more convenient in application
than the other schemes existing as they require only two-
qubit entanglements and two-qubit joint measurements,
not GHZ states, for sharing an arbitrary two-qubit state.

2 QSTS protocol with EPR pairs and
Bell-basis measurements

An EPR pair is in one of the four Bell states shown as
follows:

|ψ±〉AB =
1√
2
(|0〉A|1〉B ± |1〉A|0〉B), (1)

|φ±〉AB =
1√
2
(|0〉A|0〉B ± |1〉A|1〉B). (2)

where |0〉 and |1〉 are the two eigenvectors of two-level
quantum system, such as the polarizations of photon along
the z-direction, say σz . The four local unitary operations

Ui (i = 0, 1, 2, 3) can transform each one of the four Bell
states into another

U0 = |0〉〈0| + |1〉〈1|, U1 = |0〉〈0| − |1〉〈1|,
U2 = |1〉〈0| + |0〉〈1|, U3 = |0〉〈1| − |1〉〈0|. (3)

For example,

I ⊗ U0|ψ−〉 = |ψ−〉, I ⊗ U1|ψ−〉 = −|ψ+〉,
I ⊗ U2|ψ−〉 = |φ−〉, I ⊗ U3|ψ−〉 = |φ+〉, (4)

where I = U0 is the 2 × 2 identity operator which means
doing nothing on the particle.

The basic idea of this QSTS scheme for splitting an en-
tangled state |χ〉ab = α|00〉ab+β|01〉ab+ γ|10〉ab+ δ|11〉ab
based on entanglement swapping is shown in Figure 1.
Alice shares two EPR photon pairs |ψ−〉12 and |ψ−〉34
with Bob, and another two pairs |ψ−〉56 and |ψ−〉78 with
Charlie. She retains the photons 1, 3, 5, 7, and the two
photons a and b in the entangled state |χ〉ab. Bob and
Charlie keep the photons 2 and 4, and 6 and 8, respec-
tively. The joint state of the quantum system composed
of the six photons a, b, 3, 4, 5, and 6 can be written as

see equation (5) above.

For splitting the state |χ〉ab, Alice first performs Bell-state
measurement on the photons a and 3, and then b and
5. She records the results Ra3 and Rb5. In this way, the
state |χ〉ab is transferred to the particles 4 and 6 which
are kept by Bob and Charlie, respectively. In order to set
up a quantum channel for Bob and Charlie, Alice per-
forms Bell-state measurement on the photons 1 and 7,
and records the result R17. With R17, the state of the
photons 2 and 8 can be determined as

|Φ〉1278 ≡ |ψ−〉12 ⊗ |ψ−〉78
=

1
2
(|ψ−〉17|ψ−〉28 − |ψ+〉17|ψ+〉28

− |φ−〉17|φ−〉28 + |φ+〉17|φ+〉28). (6)

For reconstructing the original state |χ〉ab, Bob or Charlie
performs Bell-state measurement on his two photons and
then tells the other one the result when they act in concert.
We assume that Charlie will obtain the quantum secret
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Fig. 1. Quantum secret sharing based on entanglement swap-
ping with Bell-basis measurements and local unitary opera-
tion by using four EPR pairs as the quantum channel. The
bold lines connect qubits in Bell states or the two-particle en-
tangled state |χ〉ab, the dashed lines connect qubits on which
a Bell measurement is made, and the diamond lines connect
qubits in entangled states (or Bell state) induced by entan-
glement swapping, similar to that in reference [23]. Ra3, Rb5

and R17 are the results of the Bell-basis measurements on the
particles a and 3, b and 5, 1 and 7, respectively.

message |χ〉ab with the help of Bob’s. Due to symmetry,
the other cases are the same as it with or without a little
of modification. As an example, let us suppose that the
results Ra3, Rb5 and R17 published by Alice are |ψ−〉a3,
|ψ−〉b5 and |ψ−〉17

|Φ〉2846 ≡ |ψ−〉28 ⊗ (α|00〉 + β|01〉 + γ|10〉+ δ|11〉)46
=

1
2
{|ψ−〉24(α|00〉 + β|01〉 + γ|10〉 + δ|11〉)86
−|ψ+〉24(α|00〉 + β|01〉 − γ|10〉 − δ|11〉)86
+|φ−〉24(α|10〉 + β|11〉 + γ|00〉+ δ|01〉)86
+|φ+〉24(α|10〉 + β|11〉 − γ|00〉 − δ|01〉)86}.

(7)

If the result of the Bell-state measurement R24 done by
Bob is |ψ−〉24, |ψ+〉24, |φ−〉24 or |φ+〉24, Charlie needs to
perform the local unitary operations U0 ⊗ U0, U1 ⊗ U0,

U2 ⊗ U0 or U3 ⊗ U0 on the particles 8 and 6 respectively,
and then reconstructs the state |χ〉ab.

For the other cases, the relation between the local
unitary operations with which Bob can recover the orig-
inal state |χ〉ab and the results Ra3, Rb5, R17 and R24 is
shown in Table 1. Same as those in reference [18], we de-
fine V as the bit value of the Bell state, i.e., V|φ±〉 ≡ 0,
V|ψ±〉 ≡ 1; That is, the bit value V = 0 if the states of
the two particles in a Bell state are parallel, otherwise
V = 1. Vtotal ≡ Va3⊕Vb5⊕V17⊕V24. P denotes the parity
of the result of the Bell-state measurement on the two-
particle quantum system Ri ∈ {|ψ+〉, |ψ−〉, |φ+〉, |φ−〉},
i.e., P|ψ±〉 ≡ ±, P|φ±〉 ≡ ± and Ptotal ≡ ∏

i=1 ⊗PRi =
PRa3 ⊗PRb5 ⊗PR17 ⊗PR24 ; Φ86 is the state of the particles
8 and 6 after all the Bell-basis measurements are taken,
⊕ means summing modulo 2 and the unitary operations
Ui ⊗ Uj (i, j ∈ {0, 1, 2, 3}) represents performing the uni-
tary operation Ui on the particle 8 and the operation Uj
on the particle 6, respectively. For instance, if the results
of Ra3, Rb5, R17 and R24 are |ψ−〉a3, |φ−〉b5, |ψ+〉17 and
|ψ−〉24, then Vtotal = 1⊕ 0⊕ 1 ⊕ 1 = 1, Vb5 = 0, Pb5 = −,
and Ptotal = (−)⊗ (−)⊗ (+)⊗ (−) = −, and Charlie per-
forms the unitary operations U1 and U2 on the particles
8 and 6 respectively for reconstructing the original state
|χ〉ab.

In detail, Alice performs Bell-state measurements on
the particles a and 3, b and 5, 1 and 7, and she publishes
the results Rb5 , Ra3 ⊕Rb5 ⊕R17 with simple coding, i.e.,
0 or 1, and the parities Pb5 and P = Pa3 ⊗ Pb5 ⊗ P17

(+ or −). She only pays four bits of classical information
for announcing her results in public, not six bits. Subse-
quently, Bob takes Bell-state measurement on the particles
2 and 4, and records the result R24 including its bit value
and its parity (two bits of classical information). With
the four bits of information published by Alice, Charlie
can reconstruct the original state |χ〉ab according to the
Table 1 with the help of Bob’s. On the other hand, nei-
ther Bob nor Charlie can obtain the unknown two-qubit
state if they do not cooperate even they get the informa-
tion published by Alice. Let us suppose that the result
of the measurement on particles b and 5 done by Alice is
|φ+〉b5. From Table 2, we can see that Charlie has only the
probability 1/4 to choose two correct local unitary opera-
tions for reconstructing the two-qubit unknown state if he
knows the information published by Alice after Bob per-
formed the Bell-state measurement on his two particles.
That is, the four results of Bob’s measurements represent
four kinds of combination of the two operations on the two
particles kept by Charlie. Moreover, if Bob does not mea-
sures his two particles, Charlie can only obtain a random
result, no useful information about the unknown state, as
he gets only a part of the two-qubit quantum system |χ〉ab
after the entanglement swapping is performed by Alice.

Similar to the controlled teleportation [18], the origi-
nal state |χ〉ab is an arbitrary one for two-particle quan-
tum system in the Hilbert space H2 ⊗ H2, i.e., |χ〉ab =
α|00〉ab+β|01〉ab+γ|10〉ab+δ|11〉ab. Moreover, this QSTS
scheme is symmetric as each of the agents can act as
the receiver with the help of the other. In essence, any
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Table 1. The relation between the local unitary operations and the results Ra3, Rb5, R17 and R24. Φ86 is the state of the
two particles hold in the hand of Charlie after all the measurements are done by Alice and Bob; Ui ⊗ Uj are the local unitary
operations with which Charlie can reconstruct the unknown state |χ〉ab.

Vtotal Vb5 Pb5 Ptotal Φ86 Ui ⊗ Uj

0 1 − + α|00〉 + β|01〉 + γ|10〉 + δ|11〉 U0 ⊗ U0

0 1 + − α|00〉 − β|01〉 + γ|10〉 − δ|11〉 U0 ⊗ U1

1 0 − + α|00〉 + β|01〉 − γ|10〉 − δ|11〉 U1 ⊗ U0

1 0 + − α|00〉 − β|01〉 − γ|10〉 + δ|11〉 U1 ⊗ U1

0 1 − − α|01〉 + β|00〉 + γ|11〉 + δ|10〉 U0 ⊗ U2

0 1 + + α|01〉 − β|00〉 + γ|11〉 − δ|10〉 U0 ⊗ U3

1 0 − − α|01〉 + β|00〉 − γ|11〉 − δ|10〉 U1 ⊗ U2

1 0 + + α|01〉 − β|00〉 − γ|11〉 + δ|10〉 U1 ⊗ U3

1 1 − + α|10〉 + β|11〉 + γ|00〉 + δ|01〉 U2 ⊗ U0

1 1 + − α|10〉 − β|11〉 + γ|00〉 − δ|01〉 U2 ⊗ U1

0 0 − + α|10〉 + β|11〉 − γ|00〉 − δ|01〉 U3 ⊗ U0

0 0 + − α|10〉 − β|11〉 − γ|00〉 + δ|01〉 U3 ⊗ U1

1 1 − − α|11〉 + β|10〉 + γ|01〉 + δ|00〉 U2 ⊗ U2

1 1 + + α|11〉 − β|10〉 + γ|01〉 − δ|00〉 U2 ⊗ U3

0 0 − − α|11〉 + β|10〉 − γ|01〉 − δ|00〉 U3 ⊗ U2

0 0 + + α|11〉 − β|10〉 − γ|01〉 + δ|00〉 U3 ⊗ U3

Table 2. The relation between the local unitary operations and the results of the measurements done by Bob RBob after Alice
published her information about her measurements. Here VAlice = Va3 ⊕ Vb5 ⊕ V17, PAlice = Pa3 ⊗ Pb5 ⊗ P17, and Ui ⊗ Uj are
the local unitary operations with which Charlie can reconstruct the unknown state |χ〉ab.

VAlice Vb5 Pb5 PAlice RBob Φ86 Ui ⊗ Uj

0 0 + + φ+ α|11〉 − β|10〉 − γ|01〉 + δ|00〉 U3 ⊗ U3

0 0 + + φ− α|10〉 − β|11〉 − γ|00〉 + δ|01〉 U3 ⊗ U1

0 0 + + ψ+ α|01〉 − β|00〉 − γ|11〉 + δ|10〉 U1 ⊗ U3

0 0 + + ψ− α|00〉 − β|01〉 − γ|10〉 + δ|11〉 U1 ⊗ U1

0 0 + − φ+ α|10〉 + β|11〉 − γ|00〉 − δ|01〉 U3 ⊗ U0

0 0 + − φ− α|11〉 + β|10〉 − γ|01〉 − δ|00〉 U3 ⊗ U2

0 0 + − ψ+ α|00〉 + β|01〉 − γ|10〉 − δ|11〉 U1 ⊗ U0

0 0 + − ψ− α|01〉 + β|00〉 − γ|11〉 − δ|10〉 U1 ⊗ U2

1 0 + + φ+ α|01〉 − β|00〉 + γ|11〉 − δ|10〉 U0 ⊗ U3

1 0 + + φ− α|00〉 − β|01〉 + γ|10〉 − δ|11〉 U0 ⊗ U1

1 0 + + ψ− α|10〉 − β|11〉 + γ|00〉 − δ|01〉 U2 ⊗ U1

1 0 + + ψ+ α|11〉 − β|10〉 + γ|01〉 − δ|00〉 U2 ⊗ U3

1 0 + − φ+ α|00〉 + β|01〉 + γ|10〉 + δ|11〉 U0 ⊗ U0

1 0 + − φ− α|01〉 + β|00〉 + γ|11〉 + δ|10〉 U0 ⊗ U2

1 0 + − ψ+ α|10〉 + β|11〉 + γ|00〉 + δ|01〉 U2 ⊗ U0

1 0 + − ψ− α|11〉 + β|10〉 + γ|01〉 + δ|00〉 U2 ⊗ U2

QSTS scheme can be used for the controlled teleportation
[18,31–33] by means that one of the two agents acts as the
controller and the other recovers the unknown state ac-
cording to the information published by the sender and the
controller. That is, this QSTS scheme can be used to com-
plete the task of controlled teleportation of an arbitrary
two-qubit state more efficient than that in reference [18] as
the quantum resource is only two-photon entanglements,
not GHZ states which are not easy for producing [20–22].
On the other hand, the users should used at least four EPR
pairs for sharing the state in this QSTS scheme. Two EPR
pairs (|ψ−〉34 and |ψ−〉56) are used to transfer the original
state and the other two pairs (|ψ−〉12 and |ψ−〉78) are used
to set up the quantum channel between the two agents,
Bob and Charlie, with the control of the sender Alice.

3 Circular QSTS scheme with entanglement
swapping

In the QSTS scheme discussed above, the sender Alice
should provide the resource for Bob and Charlie to set up
the quantum channel, which will cost Alice a lot of quan-
tum resource when the number of the agents increases
largely. If the topological structure of the QSTS is circu-
lar, the resource can be reduced greatly. In this way, Alice
shares the two-photon entanglement |ψ−〉34 with Bob, and
|ψ−〉56 with Charlie, and then Bob shares the entangle-
ment |ψ−〉78 with Charlie, shown in Figure 2. After the
measurements on the photons a and 3, and b and 5, the
original state |χ〉ab is transferred to the photons 4 and 6.
That is, the quantum information, the unknown state, is
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Table 3. The relation between the local unitary operations and the results Ra3, Rb5, and R2i+5,2i+6 (1 ≤ i ≤ N − 1). Φ2N+4,6

is the state of the two particles hold in the hand of Charlie after all the measurements are done by Alice and Bobi; Ui ⊗Uj are
the local unitary operations with which Charlie can reconstruct the unknown state |χ〉ab.

Vtotal Vb5 Pb5 Ptotal Φ2N+4,6 Ui ⊗ Uj

1 1 − − α|00〉 + β|01〉 + γ|10〉 + δ|11〉 U0 ⊗ U0

1 1 + + α|00〉 − β|01〉 + γ|10〉 − δ|11〉 U0 ⊗ U1

0 0 − − α|00〉 + β|01〉 − γ|10〉 − δ|11〉 U1 ⊗ U0

0 0 + + α|00〉 − β|01〉 − γ|10〉 + δ|11〉 U1 ⊗ U1

1 1 − + α|01〉 + β|00〉 + γ|11〉 + δ|10〉 U0 ⊗ U2

1 1 + − α|01〉 − β|00〉 + γ|11〉 − δ|10〉 U0 ⊗ U3

0 0 − + α|01〉 + β|00〉 − γ|11〉 − δ|10〉 U1 ⊗ U2

0 0 + − α|01〉 − β|00〉 − γ|11〉 + δ|10〉 U1 ⊗ U3

0 1 − − α|10〉 + β|11〉 + γ|00〉 + δ|01〉 U2 ⊗ U0

0 1 + + α|10〉 − β|11〉 + γ|00〉 − δ|01〉 U2 ⊗ U1

1 0 − − α|10〉 + β|11〉 − γ|00〉 − δ|01〉 U3 ⊗ U0

1 0 + + α|10〉 − β|11〉 − γ|00〉 + δ|01〉 U3 ⊗ U1

0 1 − + α|11〉 + β|10〉 + γ|01〉 + δ|00〉 U2 ⊗ U2

0 1 + − α|11〉 − β|10〉 + γ|01〉 − δ|00〉 U2 ⊗ U3

1 0 − + α|11〉 + β|10〉 − γ|01〉 − δ|00〉 U3 ⊗ U2

1 0 + − α|11〉 − β|10〉 − γ|01〉 + δ|00〉 U3 ⊗ U3

Alice

Boba 43

5

7

6 8b Charlie

Fig. 2. The circular QSTS scheme with entanglement swap-
ping in the case with two agents.

split by Bob and Charlie. The entanglement |ψ−〉78 is just
used to transfer the unknown state |χ〉ab to one of the
two agents with the help of the other. The entanglement
|ψ−〉12 is not necessary in this circular QSTS with two
agents.

It is straightforwardly to generalize this circular QSTS
scheme to the case with N agents, say Bobi (i =
1, 2, ..., N − 1) and Charlie. As the symmetry, we still as-
sume that Charlie is the agent who will reconstruct the
unknown state with the help of the other N − 1 agents,
Bobi. To this end, Alice should share an EPR pairs |ψ−〉34
with Bob1 and another pair |ψ−〉56 with Charlie. The ith
agent Bobi shares an EPR pair |ψ−〉2i+5,2i+6 with the
(i+1)th agent Bobi+1 (i = 1, 2, . . . , N−2). [The (N−1)th
agent BobN−1 shares the entanglement |ψ−〉2N+3,2N+4

with Charlie.] If an agent wants to act as a controller, he
performs a Bell-state measurement on his two photons.
That is, all the Bobs measure their photons and then tell
the information of the outcomes to Charlie for reconstruct-
ing the original state |χ〉ab when they cooperate.

Table 3 gives us the relation between the results and
the local unitary operations. All the notations in Table 2
are as same as those in Table 1, see Section 2. We do not
exploit the notation for the EPR pair |ψ−〉12, then the
total value Vtotal is the sum of the values of the outcomes

obtained by Alice and the N −1 controllers Bobi. So does
the total parity Ptotal.

In this circular QSTS scheme, each user should share
an EPR pair with his neighboring one, and he performs
Bell-state measurements on his photons if he wants to act
as a controller. Alice’s measurements will transfer the orig-
inal two-qubit state |χ〉ab to other photons with entangle-
ment swapping. The measurements done by the controllers
help to set up the quantum channel for sharing the state
with their control. For the view of producing or measur-
ing a m-particle entanglement, this circular QSTS scheme
is an optimal one as it just exploits two-photon entan-
glement resource and Bell-state measurements. As almost
all of the photons are useful for the quantum communi-
cation, its efficiency for qubits approaches the maximal
value. Same as the QSTS scheme discussed in Section 2,
any one of the agents cannot obtain the quantum infor-
mation, the unknown two-qubit state unless he cooperate
with all of the other agents even though Alice published
the results of her measurements.

4 Discussion and summary

As discussed in references [2,3], if Alice can prevent the
dishonest man (no more than one) in the agents from
eavesdropping the quantum secret, the process for sharing
an unknown state is secure for any eavesdropper. In these
two QSTS schemes, their security depends on the process
for setting up the quantum channel (sharing the maxi-
mally entangled states), i.e., the EPR pairs. Certainly, it
is difficult for two users to share an EPR pairs securely,
but easy to share a sequence of EPR pairs [24,27]. In a
noise channel, the parties can exploit entanglement purifi-
cation [35,36] to distill some maximally entangled states
for improving the security of quantum communication. In
this way, these two QSTS schemes for sharing an arbi-
trary two-qubit states are secure. Another feature of these
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two QSTS schemes is that two-particle Bell-state measure-
ments are required, which is more efficient than those with
m-particle joint measurement (m > 2).

In summary, we present two QSTS schemes for sharing
an arbitrary two-qubit state |χ〉ab = α|00〉ab + β|01〉ab +
γ|10〉ab + δ|11〉ab based on entanglement swapping with
EPR pairs and Bell-state measurements. One is based on
the quantum channel with four EPR pairs shared in ad-
vance, the other is based on a circular topological struc-
ture. Any one in the agents has the choice to reconstruct
the original state |χ〉ab with the help of the others. More-
over the circular QSTS scheme reduces the quantum re-
source needed largely when the number of the agents is
large. Almost all the EPR pairs can be used for quan-
tum communication in those two schemes, their efficiency
for qubits approaches the maximal value, same as refer-
ences [16–18]. They are more convenient in application
than the other schemes existing as they require only two-
qubit entanglements and two-qubit joint measurements for
sharing an arbitrary two-qubit state.
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